'AD—AO% 452 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2
T AN EXPERIMENTAL INVESTIGATION OF COMPUTER PROGRAM DEVELOPMENT A==ETC(U)
DEC 79 R W REITER FOSR-77-31!I.
UNCLASSIFIED TR=-853 AFOSR=TR=81-0214

lw2
2%
m.

* COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
FLEC TE
MAR 17 19813

UNIVERSITY OF MARYL
COLLEGE PARK, MARYLAND
20742

ved fo pablie release}
ro
:ﬁitmbm jon unl jmitede

81 3 16 035

Technical Report TR-853 d December 1979

An Experimental Investigation of
Computer Program Development Approaches
and Computer Programming Metrics*

by
Robert William Reiter, Jr.

P~

AIR FCRCE CITICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE Gy 1o DUUTTAYL TO LT

Trin toelh o b ot o L -.on yeviewed and is
approvil o pall o0 d sle LAW AFR 190-12 (7b).
Districeto>y s usidimated,

A. D. BLUGH
Techulecal Infcraation Officer

Dissertation submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1979

*Research supported in part by the Air Force Office of Scientific
Research Grant AFOSR=77-3181. Computer time supported in part
through the facilities of the Computer Science Center of the
University of Maryland.

w FE
i

- b AR MBS ATLTA TR N

— UNCIASSLIFIED
—— GECORITY WFICAHON OF THIS PAGE (Whan Data Frtered)
(J7 REPORT DOCUKENTATION PAGE
M. REPOR IEY GOVT-—ACCE'SKION NO.[3 HECIPIENT'S CATALGS NUMBLR
O AFOSR \TR S1-02 141 (WD HeYe ysh
I 4. TITLE (and Subtitle) S TYPE OF REPORY 8 P &R|~D ~i —';:;""—1
7 A e —- i T e ’ p—"\.?-"> e Ceae
. _}/ & WERImWAI JNVESTIGATION OF QOMPUILR i (/ T St 5
<ROGRAM DEVELOPMENT APPROACHLS AND _g)MPUﬂZR b o , "'7:» i
ROGRAMMING EE‘IPICS,))
7. AUTHOR(Ss) 8 C Y ; = T S
8 COMNTHACT OR GRANT N JMEES .
(ﬂ’ }Robert W1111am/Re1ter, J1} C
| - T ./ -nFOSR-77-3181
; 9. PERFORMING ORGANIZATION NAME AND ADCRESS 1C F:Q’:'-"L‘A\I.EL EvEnT FROE L TaLe
L University of Maryland TR AR e,
- : Department of Mathematics i - - ‘
- College Park, Md. 20742 61102F ¢\ 23p4(A2
11 CONTROLLING OFFICE NAME AND ADODRESS L4 PEF’QR“ Oape - }) i
Air Force Office of Scientiffc Research/NM 1 1 Docombaesz979 / ;
Bolling AFB, Washington, DC 20332 \ l)!'Nunaeno:‘A A ‘
' . 150 s |
3 T8 MOTITORING AGENTY NAME & ADDRESS(H differont from Contrallms Jifien) ’ 'S, SECURIT \«T——?‘—,"m
. UNCLASSIFIED
T i CEZLRT FIZaTion i smat 0

N SCHEDLLE

15. DISTRIBUTION STATEMENT rof this Report) T

Approved for public release; distribution unlimited.

17. DISTRIBUTIOMN STATEMENT (cf the abstract entered in Blnck 20, 1f diftesent from Ruopnrt®

1B. SUPPLEMENTARY NOTES

R

13. KEY WORTDS "“nntinge ~n reverse side if neressary and identify by block number

' A

i

\‘ 20 éﬂ(‘STRACT (Cantinus on teverse side If nececanry and idenf v ':\-“rl\ln(-ﬁ—n”"v“vnf‘ T T T o m T s s e e

Ihere is a need in the emerging field ¢f software cngincering for

empirical study of software development approaches and software metrics.

An experiment has been conducted to compare three programming enviroments
individual programming under an ad hoc approach, team progranming under an
ad hoc approach, and team programming under a disciplined methodology. This
disciplined methodology integrates the use of top-down design, process design
language, structured programming, codgireading, and chief programmer team
organization. Data was obtained for a%én._nunbor of automatable software

FORM
DD, ,iv7s 1473 ﬂ UNCLASSIFIED 17 /\
H 0 ?p ; g‘ SECURITY CLASSIFICATION COF THIS P AC T When ate Foterer
VT e
- R - - -

P R A s——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Fnterod)

\\f7metrics characterizing the software development process and the
developed software product. The results reveal scveral statistically
significant differences among the programming enviroments on the basis
of the metrics. These results are interpreted as demonstrating the
advantagcs of disciplined team programming in reducing software develop-
ment costs relative to ad hoc approaches and improving software product
quality relative to undisciplined team programming.r::k

€ e ek it s aemn et s

SECURITY CLASSIFICATION OF THIS PAGErWhen Dara Entered)

ABSTRACT

Title of Dissertation: An Experimental Investigation of
Computer Program Development Approaches

and Computer Programming Metrics
Robert William Reiter, Jr., Doctor of Philosophy, 1979

Dissertation directed by: Dr. Victor R. Basili
Associate Professor

Department of Computer Science

There is a need in the emerging field of software engineering
for empirical study of software development approaches and software
metrics. An experiment has been conducted to coumpare three
programming environments: individual programming under an ad hoc
approach, team programming under an ad hoc approach, and team
programming under a disciplined methodology. This disciplined
methodology integrates the use of top-down design, process design
ianguage, structured programming, code reading, and chief program-
mer team organization. Data was obtained for a large number of
automatable software metrics characterizing the software development
process and the developed software product. The results reveal
several statistically significant differences among the programming
environments on the basis of the metrics. These results are
interpreted as demonstrating the advantages of disciplined team
programming in reducing software development costs relative to ad
hoc approaches and improving software product quality relative to
undisciplined team programming. e

Acce-cion For
E—

KITS CRA&I
Diin 17

Unannoy oo 1
Justilio~t o

_— e

DURINSRpSISS

Pv_ . —

DEDICATION

In honor of my mother and father,
Mary Edith Reiter
. and

Ropert 4dilliam Reiter, Sr.

e e L AL ot

NS

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Office
of Scientific Research through grant AFOSR-77-3181A to the
University of Maryland. Computer time was provided in part
through the facilities of the Computer Science Center of the
University of Maryland.

This work could not have been accomplished without the
cooperation and assistance of others. To students who
participated in the experiment, colleagues who offered
helpful suggestions, and faculty who reviewed the work
critically, I am most grateful. Drs. Richard G. Hamlet and
Ben A. Shneiderman critiqued this manuscript thoroughly on
the basis of '"programming sense," experimental procedure/
terminology, and writing style. Drs. Marvin V. Zelkowitz
and John . Gannon imparted a healthy sense of reality and
provided an appropriate measure of stimulation/inspiration
throughout their lengthy service as members of my study

committee.

I am indebted beyond measure, however, to two people
whose professional contribution and personal sacrifice have
continually enriched my work as well as my life. I thank my
advisor, Dr. Victor R. Basili, for his expert guidance and

patient encouragement. I thank my wife, Lowrie Ebbert

Reiter, for her unselfish support and unfailing love.

Chauter

TABLF OF CONTENTS

Ie INTROCUCTION AND OVERVIEw o o o o
1le BACKGROQUND AND RELATED RESEARCH .

Software Cevelopment Aporoaches

Software
emoirical/Experimental Study .

I1is INVESTIGATION SPECIFICS ¢ o o o o

Metrics o o o .

SUrfOUnd‘ﬂQS a o e & @& o o o
Experimentat Desvan o o
Programming Nethoaoloaves ¢
Data Collection and Recduction

Programming Aspects and Metrics

Ive GLOSSARY OF PROGKAMMING ASPECTS .
ve DISCUSSION OF ELABORATIVE METRICS

°rogram Chanaes e o o o &
Cyetomatic Complexity o o
Data gindinas « & o & _9o_ o o
Software Science Guantitie

S

VIe INVESTIGATIVE TECHNIGUE , o o o o

LY
ST OoOTOD

ABE o)

£

PR v Lo SN e AUV RPT NN

(S v 90 0a 80 cane ve 0090

-l
.

i

Questions of Interest

Research Hypotheses .
Statistical Model . e
Statistical Hypotheses
Research Frameworhs .
cexperimental [esian .
g llected Data « o o

)

1 o O

atistical Results .

?

THULTS o 6 ¢ 8 0 o o @

S ldlioNn s ¢ e ¢ ¢ o ¢« o @
Imoact Evaluation .

S Toued Drffnrentiatwon V1eu
A Directionless View ¢ o ¢ o o
Tnaividual H‘&,hl‘ohts s e o o

T IMTERPRETIVE RESULTS s a o o o o

According tou vasic Surpositions

According

L] L] L L] L d * * L J

9 L] ” 2 * 4 -
MiscellaneousSe ¢« o ¢ ¢ o s o

IA. SUMMARY AND CONCLUSIONS e o e o @

Appencix

> e & O []

atistical Test Procedur

statistical Conclusions
#esesrch Interoretations

s ® Mo o o0 90 00 [}

ie Statistical pescriotion of Raw Scores

heferences , ,

iv

S

to Programming=Aspect Class

*® o o @

® o @ 0

(N 0 O -,

A NN S
NOM B0 N

(@]

DOV O O 00MWBVBVWOVVNNN N MAAan

)

O OW N Ny Namwnun & ANOWMAMPNIONNND WU NN -

1
1
1
1
1
1
1

N Na D

LIST GF TABLES

Tatble

1. Programming ASPDeCtS o« o o o o s ¢ o o o« o o« o o o o 30a
e Statistical Conclusions , . s« « o o o o & o o o o & 953
3. Statistical Impact Evaluation . « o o o o o o o o » 972

4e1 nNon=Null Conclusions, for Location Comparisons,
arranged by OUTCOME o o s o o o o » s o o o « o s o 982

Le2 NoONn=Null Conclusions, for Cispersion Comparisons, ;
arranaed by OULCOME &« o o o & » o o © o o » o o » o 98h

el Relaxed pifferentiation for Location Comparisons .« 1"0s i

SeZ Relaxed pDifferentiation for Dispersion Comparisons

L 4 L) L d L] L] L] L] e L 4 L L L L] L] ."' o L 4 L] L] L L [) L] . [] 1(-03

6.1 C(Conclusions for Class I,
gffort (Job sSteps) « o o 86 & 6 6 o » v o & o o s o 1142

6.2 Conclusions for Class 11,
€Errors (Program (hanges) e © o o o e o & a o s » o V162

6.3 C(Conclusions for Cltass 1] »
Gross Size o o o o o o o'o e o o o s o v o s o s o 1172 {

6e4 Conclusions for Class 1V,
Control=Construct StrucCcture o« o« ¢ s« ¢ o s ¢ o o o & 1208

6.5 Conclusions for Class V,
Data Variable 0rqan1zat)on e & o ¢ & o o o o &

6.6 Conclusions for (lass Vi,
Packaging Structure « o« « « ¢ o s ¢ o o o &« o @

6«7 C(onclusions for (ltass vi1l,
Invocation 0rFgan1zation o« « « o o e s o ¢ o o

6.& Conclusions for Class VvIil,
Communication via Parameters o ¢ o o o o » o &

6.9 Conclusions for Class 1Xx,
Communication via vlobal variables « o« o« o o &

LIST OF FIGURES

Fiqure
1. frequency Distribution of Cyclomatic Complexnity
2e Investicative Methodology Schematic « o o o« o

317 Lattice of Possible Directional QOutcomes
for Three=-way Comparisun e & o o © @ o ¢ s o o

Je2 %attice ot Possible Nondirectional Outcomes
or Three=uay (OMDArPISCN o ¢ ¢« ¢« ¢ ¢ ¢ o ¢ o »

beo Association Chart for kesults and Conclusions .

CHAPTER I

.
L]
-
-
1—
(3]
o
r©e
S
—
—
©
[
1»
[P4
©

CVERVIEN

In the evolution of a systematic body o0f knowledgye,
there are cgenerally three phases of validation, The ftirst
chase is the logical aevelopment of the theory based on a
set of sound grinciples. This is followed by the
apolication of the theory and the gathering of evidence that
the tneory is apoplicable in practice. This usually involves
some gualitative assessment in the form of case studies.

The finmal phase is the enpirical ang experimental analysis
of the applied theory in order to further understand its
effects and better gemonstrate its advantages in a
coatrollied manner., This usually requires quantitative

measurement of the relevant phenomena.

4uch has been written about methodologies for
develooping computer software [Wirth 71; Daht, Dijkstra &
Hoare 72; Jackson 75; Myers 75; Linger, Mills % wWitt 791,
“ost of these methodologies are based on sound logical
principlese Case studies have been conducted to demonstrate
their etfectiveness [3aker 75; 3asiti & Turner 75]. Their
agoption within production (Yreal-world”) environments has
generally teen successfuls. Having practiced adaptations of
these methodologies, software designers and programmers have
assertea that they got the job done faSter, made fewer
errorse, or produced a better product. uUnfortunately, solid
auantitative evidence that comparatively assesses any
particular methodology is scarce [Shneiderman et al. 77,
“yers 78], This is due dartially to the cost and
imoracticality of a valid experimental setup within a

orsduction environment.

Thus the guestion remains, are measurable benefits

derived from programming methodologies, with respect to

atee A g s

CHAPYER 1

e1ther the software development process or the developea

suftware product? tven if the benefits are real, it 15 not

clear that they can be quantified and effectively monitored,
Sottware development is still too artistic, in the aesthetic
or spontaneous Sense. In orver to understand it more fully,
manance it more effectively, and adapt it to particular

L,) apolications or situations, software development must become

more scientific, in the engineering and calculatea sense.
Yore empirical study, data collection, and experimental

analysis ére required to achieve this goal.

e e —— = e

This dissertation strives to contribute to software
enjineering research in this vital thirg phase of
validation. The dissertation reports on an original
research project dealing with three "dimensions® of software
enjineering:

Software development approaches, i.e., programming
nethodologies and environments for geveloping software;

i Software metrics, 3J.e., quantifiable aspects of
orndramming and measurements of software characteristics;
Ape

Empirical/experimental study, i.eer the collection and
statisrical anaiysis of empirical data about software
i ~henomena-. including controlled psychological

experimentation,

The immediate goals of the project were

(3) to investiqate the effect of certain programming
methodologies ang environments upon software
geve lopment phenomena,

(0) to investigate the behavior of certain quantifiable
programming aspects and software measurements under
gitferent approaches to software development, anao L

(c) to devise and apoly an investigative methodology,

tounded on established crinciples of experimental

CHAPTEP

research, but tailored for application to software

engineering.
The project employea the investigative methodology to
conauct and analyze a controllea experiment with software
development approaches as independent variables and software
metrics as dependent variables. 1In this way, both the
ettect of the software cevelopment approaches and the
behavior of the software metrics were investigateg

scientifically.

In regard to software development approaches, the
croject focused on three distinct approaches, or programming
environments: single programmers using an ad hoc approach,
crogyramming teams using an acd hoc approacthy and programming
teams using a disciplined methodology. These approaches may
be cnaracterized according to two human—-factors issues: the
size of the programming "team'" deployed and the degree of

met hogological discipline employed.

in terms of team size, individual programmers working
alane were compared to teams of three programmers warking
tojether, In terms of methocdological discipline, an ad hoc
aporoach allowing progranmers to develop software without
externatly imposed methodological constraints was comgareag
to & agisciolineag methodology oblLiging programmers to fotlow
certain modern programming practices ang proceduress This
discirlined methodology consisted of an intearateac set of
software development techniques and team organizations
incluging top~down design, process ocesign language,
structufed programming, code reading, and chief programmer

te3dinse

It shoulu be noted that the terms “methodology” anu
“netnodological” (in reference to software development) are

useg to connote an intejrated set of development technigues

td

ChAPTER 1

as ~ell as team organizations, rather than a particular
technique or orgyanization in isolations Part of the
philosophy behind the project is the belief that, while
narticular techniques or organizations may generate marginal
tenetits individually, only a comprehensive ensemble can
ensure significant jains in software development

nroguctivity and reliability.

in reasard to software metrics, the project focused on
the direct quzntification of software development phenomena
413 o host of nearly two hundred programming aspects aNna
measurements. Attenticn was consciously restricted to
metrics exhibiting certain dJdesirable characteristics; altl of
the software metrics examinea in the study are quantitative
{on at least an interval scale (Stevens 46]), objective
(free from inaccuracy due to human subjectivity),
unobtrusive (to those developing the software), and

automatable (not dependent on human agency for computation).

This large set of programming aspects may be
tignoatimized on tne pasis of other criteria. Some of the
Ay0ects pertain to the software development process,; others,
fu the developed sotftware producte. For examole, the number
¢t times that source code modules are compiled during the
development pertod is a process measure, while the number of
If statements in the gdelivered program source code is a
croduct measure. Some of the aspects are rudimentary, in
that they pertain to very simple surface features or lLack

theoretical models to motivate intuitive appeal; others are

in that they aim at more complicated underlying

features or possess provocative theoretical models, For
example, the measurements mentioned above are both
rujimentary, while the program changes metric [Dunsmore 2
cannon 771 and the cyclomatic complexity metric [McCave 76)

are elaborative.

CHAPTER

in regard to empirical/experimental study, the project
ccnbined both empirical dJata collection and controllea

psycnological experimentation in a laboratory~-like setting,

The project involved extensive observation of forty-
five programmers developing working software systems,
averazing twelve hundred lines of code each, from scratch
during a five week periode These programmers were divided

into three disjoint grouos of '"teams," each following one of
the tnhree software development approaches mentioned above.,
vultiple replications of a sgecific software cevelopment
task were cverformed indeoendently and concurrently within
eacnh group unuer conditions as otherwise identical as

possicle.

In agdition to some subjective qualitative observation
via guestionnaires, interviewsy, e€tcey Objective quantitative
coservation was achieved by automatically and unobtrusively
monitoring the computer activites of the programming
“teamse."™ Ffor each replication, successive versions of the
softJare oeing developed by that *"team'" were captured in an
historical data bank that recorded details of the
Jevelocment process and doroguct. Raw scores for the
scftware metrics menticoned abtove were extracted from the
Jata vank and summac~ized via simple descriptive statistics.
<cecifically, the mean values and standard deviations
ocserved within each group on the various quantifiable
6r3;rdmming aspects constitute the immediate results of the

project as an empirical Jata collection effort.

The project followed a creplannd experimental agesign in
which extraneous factors were held constant wherever
possibley to insure that differences in the software netrics
would be attributable to the gifferent software development

aporoaches., The metrics” raw scores were analyzed using

;
H
3
]

CRAPTEP |

noaparametric interential statistics to obtain an objective
ccnclusion tor each measured aspects AS precise statements
of the statistically significant differences observed among
the three proaramming environments on the basis of the
~easurey aspects, these objective conclusions constitute the
immediate results of the project as a controlled experiment.
“y testing for aifferences in either the location (expected
valye? or the digpersign (variability) of the software
"etricsy the experiment adoressed both the expectancy and

Aregictability of software development phenomena.

The experiment combined elements of both confirmatory
ind exploratory data analysise. Some so~-called gonfirpatory
~rfagramming aspects had deen earmarked as promising
indicators of important software characteristics in aavance
~f conducting the experiment. Hypotheses had been
‘srmulated, on the vasis of the proygyramming environments”
zr.spected effects, regarding the expected objective
‘paclusions for these confirmatory aspectses The project
‘retuvoed other so-called exploratory programming aspects in

orler to 1rvestigate the software development process and

“muet more thnrgughly.

The project «as concerned with investigating an entire
sott.are oevelorment project of nontrivial size in a quasi-
realistic settinge The experiment was conducted within an
at3uemic environment in 3 laboratory or proving=grounau
‘ashion so that an adegquate experimental design could be
achreved «hile simulating a production environment. 1In this
wdy., the project reached a reasonable compromise between
“toy" experiments, which facilitate elavorate experimental
desi<ns but often suffer from artificiality, anag
“production' experiments, which offer industrial realism but

incur orohibitively high costse.

CHAPTER 1]

The project s bpasic premise was that distinctions among
th2se projramming environments exist poth in the process and
in tne product. Wwith respect to the gevelopea software
orsguct, the aisciplined team should approximate the
individual programmer or at least lie somewhere between the
individual programmer and the ad hoc team, with regard to
proauct characteristics (such as number of decisions coded
and jlobal data accessipility)e This is because the
disciplined methodology should help the team act as a
meatally cohesive unit during the design, coding, and
testing phasese. with respect to the software cevelopment
processy, the agisciplined team should have advantages over
toth indiviauals and ad hoc teams, displaying superior
performance on cost-related factors such as computer usage
and numnber of errors made. This is because of the
discipline itself and because of the ability to use team

menpers as resources for validation.

The study”s findings reveéaled several programminy
ch2aracteristics for which statisticall, significant
differences do exist among the groupss. The discipglined
teams used fewer computer runs and apparently made fewer
errors auring software cevelopment than either the
individual programmers or the ad hoc teams. The individual
programmers and the disciplined teams both produced software
with essentially the same numper of decision statements, but
so‘tware produced Yy the ad hoc teams contained greater
nunoers of decision statementse FOr no characteristic was
it concludeg that the disciptined methodology impairea the
effectiveness of a programming team or diminished the

quality of the software orocuct.

The remainder of this aissertation is a comprehensive

redort on the software engineering research project

introcuced above. C(hapter (] reviews appropriate background

CHAPTER |

and related research trom published literature. Chapter 111
recounts specific details ot the exgeriment itself. C(hapter
'v nriefly describes all of the nroyramming aspects and
measurementsy while Chapter V discusses the elaborative ones
in depthe. Chapter VI depicts the investigative methodology
used to plan, execute, and analyze the experiment. Chapters
VII and VIII present the experiment”s results, segregated
into objective findings and interpretative discussion,
respectively. Chacter IX summarizes the completed project,
“raws 3eneral conclusions regarding its contribution to

software engineering, and mentions possible directions for

continued research in this area.

CHAPTER 11

Ile gACKGHQUND AND RELATEDR BL3EABCH

This chapter reviews the general background for this
research project and surveys relateo work published in the
open Literature. For each of the three "dimensions® of
softsare engineering outlined in Chapter I, specific
instances of research in that area will be mentioned and
toosely characterized, in order to show appropriate
sinilarities ana constrasts with this worke As a2 catalog of
related research, the chapter is intended to pe merely

representative, not exhaustive,

Scftesare Development Apgergaches

There has been considerable concern regarding
programming methodologies over the past decade since the
advent of structured programming and the dawning of software
cost cnonsciousness. Software "practitioners"™ (i.e.,
programmers, designers, Ssystems analys?s, and managers) have
scught pbetter ways to channel their energies toward
producing cost-etfectivey, reliable software. Althougn a
braay spectrum of concerns~-spanning all phases ot the
software life~cycle and covering the full range ot system
size anag performance constraint--ccould be consigdered here,
attention has been restricted to methodology for
prograeanming-in-the-small#+*: gesigning, implementing, and
testing computer programs to solve problems small enough to
be well-understood by a suitably trained individual., 1In
other words, the focus s on approaches for the kind of
software development that typical programmers/analysts in
tyoical software shops are accustomed to doing.

- -

* 85 ysed here (and below), the meanings of the terms
“wrogramming-in-the-small” and “proyramming-in-the-large”
are clear from the context, but they differ slightly trom
the meanings popularized by Dr. HeDe MillSe

CHAPTER 11

ST T AR AR e

; A numher of good ideas on how to develop software,
covering techniques for how to proceed as well as
orjanizations for managing people and communicating
information, have peen (or are being) devised, demonstrated,
cerfected, anc accepted into everday practice. Popular
examoles include the following:

structured orogramming [(Dahl, Dijkstra % Hoare 7.;

N “itls 72; Rasili & Baker ?77; Linger, Mills & witt

| 751,

stepuwise retinement [wirth 713,

chiet programmer teams {HBaker 72; Baker 75; Brooxks 751),

process design language (°pL) (Linger, Mills & Witt

791,

top~-down design,

functional expansion,

gesign/code reading and walk=throughs [Fagan 761,

gata apstraction/encapsulation and information hiding,
iterative enhancement (Basili & Turner 75; Turner 763,
the Michael Jackson method [Jackson 75; Mughes 7%], and
composite design {(vyers 75].

These approaches and their highly touted benefits have
neen the subject of much written promotion and verbal
discussion. Indeed, several can boast of mathematical
toundstions or formal explication to support their
underlying principles or mechanisms; for others, there are
extensive tutorials on how to apply them in practical
situations; and some have been embodied in programminy
tanguages or packaged into automated tools. All of tnis
attention, plus the favorable experiences of software
cractitioners, seems to indicate that these software
develooment agproacnes do succeed in improving the
efticiency ot the develooment process or the quality of the
develooed product to some degree.

10

CHAPTER 11

put there is Little empirical evidence to contirm the
advantages of these approaches or measure their benefits,
In several instances, case studies have been performeu,
often in a pioneering spirit, to demonstrate particular
aporoaches; these case studies have usually involved
qualitative assessment, with only Limited or uncontrolled
forms of gquantitative assessment. C(omparative assessment of
software development approaches is even rarer: only a few
controlled experiments [Shneiderman et al. 77; Myers 78]
have been ctonducteds, and they have generally focused on the
use 0t particular technigues in isolation. The difficulty
of investigating the effects of software development
aporocaches stems precisely from the fact that they pertain
to tne (east understood and most expensive elements in

sottware engineering: human beings.
Software Metrics

There has been considerable interest in software
metrics over the past half decade in response to a growing

realrzation of how "invisible,"” imponderable, and
uncontrollable software can bes Software "scientists® have
teen seeking ways to measure software phenomena. B8Sroadly
interpretec, tneir efforts may be characterized as
attempting to quantity process efficiency and product
qualityer The software measurement domain extends from the
cecacrete details of a program, including its fine structure
ani the resource expenditure required to produce it, to its

aostract characteristics: reliability, cost-effectiveness,

* This concept of product guality is meant to include
in;tantaneousy as well as evolutionary, consigerations. The
former considerations pertain to both static (at comgcile
*ine) and dynamic (at execution time) features of a program,
as it exists at a given point along its life-cycle. The
tsttaer LOnSiderati?ﬂS pertain to issues of software
mayntenance and software management throughout the life-
rceles The software measures in this dissertation adaress
proguct guality only in its instantaneous, static sense.

11

CHAPTER 11

conplexity, modularity, comprehensipity, modifiability, etc.

Because measurement is essential to most forms ot
enlineering, software metrics rightfully deserve a central
clace within the emerging discipline of software
enyineering. As in other technologies, the underlying
assumption is that approoriate measurement is the key to
effective control. It has been demonstrated [(Gilb 7?73 that
the jJeneral concept of software measurement can be applien
to a variety of programming issues: many interesting
sultestions were made re3arding how and why to measure
software. But the metrics discussed by Gilb are vaguely
detined and superficiale The problem is that meaningtul
measurement of software is extremely difficult, because of
software”s intricate structure of concrete detait and
hecause of the tenuous relationship between its concrete
details and abstract characteristicses An additional problem
is the lack of well-understood and commonly accepted
terminology to describe the software phenomena to be'

measured.

However, a numober of well~-defined and fairly crecible
software metrics have been proposed and evaluated, usually

in conjunction with a motivating model or some intuitional

underpinningse. The program changes metric {Dunsmore &
Fannon 77; Dunsmore 75] extracts an error count
aljorithmically from the textual revisions made to source
code during program development. The cyclomatic complexity
metric (“cCabe 76] counts the number of "basic'" control-flow
paths in a program. The data bindings metric [Stevens,
“yers % Constantine 74; 3asili § Turner 75; Turner 761
counts commmunication paths between code segments yia data
variavles, The various mnetrics from software Science theory

Twytlstead 77)==-program length, program volume, Language

level, effort, etce-=provide a unified syste~ ot

CHAPTER 11

~easurements for the size of a program, the amount of
intormation it contains, the level of abstraction it
exdresses, the amount of mental effort required to produce
or comprehend it, etc. The error—day metric [(Mills 76] is
an ingex of how early errors are detected and corrected
durin, software development. The span metric [(Elshoff 7601
is an index of the extent to «hich a program”s data
variaoles remain "live" (i.e.; continue to affect control

flow and data value determination),

tach metric mentionsag above has been examined

emoirically to one degree or another; but few software
metrics have peen investigated in controlled experiments,
and there is Little research comparing metrics or examining
their interrelationships empirically. FfFurther elaboration
and discussion of individual software metrics is deferred to
Chapters IV and Vv since many were examined in this reseach

praojecte.

N

nairical/Experimental Study

First-hand observation of software phenomena in the

“eild,y'" so to speaky has long been regarded as a unique

source of information and the ultimate form of validation.
ver since Knuth rummaged through wastebaskets at computer
centers for discarded listings of Fortran programs [(Xnuth
71], software "technicians®™ have been interested in watching
software be developed, to see how the latest intuitive
opinions or theoretical nodels fare against reality.
Ideallyy, it is useful to distinguish between data collection |
etforts (with descriptive statistical analyses) and

controlled experimentation efforts (with inferential

statistical analyses); but, in practice, elements of poth

are somnetimes combineg within the same empirical study.

L ot i o mibetian - silndihaciny

CHAPTER 11

venerally speaking, the purpose of data collection
etturts has been to examine the behavior of software metrics
an? models unager realistic conditions, A numpber of data
collection efforts have Deen aimed at progamming=-in-the-
large,* focusing on models of gross behavior (i.e., COSt,
proguctivity, resource estimation) during large- to medium-
scate software gevelopment. At 18M [walston 3 Felix 77
-.ata was coltlected via croject reporting forms {n order tg
Treasure proauctivity on oroduction software developments,
At NASA/Goidard [3asili et als 77) data is being collectea
via information forms in order to evaluate cost or resource

estimation mogels and to study software error phenomena.

Other data coliection efforts, focusing on small~- to
medium-scale software development, have been aimed at ;
quantitatively characterizing software”s tine structure. In
studies at G" [Elshoft 76b; Elshoff 76al, a large set of
conmercial PL/T1 programs was collected and measured
accoraing to a host of quantifiable programming aspects and
software metrics, including the span metric and the software

ccience metricsSe.

venerally speaking, the purpose of controlleg
exoerimentation efforts has been to evaluate the effects of
croagramming language features, human factors issues, and
crosranming methodologies upon software phenomena and
acstract characteristicse Usually, the language features
expoeriments are done from a computer scientist's viewpoint,
while the human factors experiments are done from a
csychologist®s viewpoints However, because of areas of
natural overlap between these two concerns, Some
exoreriments fall into both categories. Together they
conpgrise the bulk of controlied experimentation in sottware

- -——-—- -

* See earlier footnote.

14

CHAPTER 11

enjineering.

There are several well-known examples of controllea
excerimentation on programming lLanguage features. wJeissman
Tdeissman 74a; weissman 74b] conducted experiments on how
eroyramming features atfect the psychological complexity of
software; tne features included commenting, indentation,
mnemcnic variable ngm?s1 ana control structures. Gannon
{Gannon 75; Gannon & Horning%?S} conducted an experiment on
how pgrogramming language features affect softauare
reliapility and the presence/persistence of errors; the
features included statement vs. expression orientation, data
variaole scope conventtons, and expression evaluation order.
Later, 3Sannon [Gannon 77] ran experiments to examine now
data typing conventions affect software reliability. Using

the same empirical data, Dunsmore [Dunsmore & Gannon 77;

nunsmore 7%] examined how programming "complexity" is
atfectea by progyrammer-controllable variations in
progjramming features. 'Complexity”™ was measured
alzorithmically by the program changyes metric; the features
included statement nesting cepth, frequency of data

references, and data communication mechanism preference,

There are several well-known examoles of controllied
exderimentation on human factors issuese. GSseveral
experiments [(Sime, Green § Guest 72, Green 771 have been
congducted on the comprehensitility of different mechanisms
tor implementini conditional pranching. Several experiments
(Shecpard et ale 779] have been conducted on the effect of
modern coding practicesy sSuch as structured coding, mnemonic
variavle names, and style of commenting upon the ease of

performing comprehensiony modificationy and debugging taskse

Finally, there are 3 few well-known examples of

contrclled experimentation on programming methodologies.

CHAPTER 11

Several experiments were conducted [Shneiderman et al., 77]
to evaluate the utility of cetailed flowcharting (as a
desiygn tool and cocumentation aid) in program composition,
conprehension, depugging, anc modification tasks; novice
pragamming students were employed as subjects, with short
(ieeey less than 150 Lines) Ffortran programs as test
materials. Some exgeriments were also conducted [Myers 75]
to evalyate the utility of code reading and walkthrouzhs in
dedugging tasks, experienced professional programmers were
endloyed as subjects, with a short PL/1 program as test
material. To date, however, controlled experimentation on
programming methodologies has been Limited in scope.
“xperimental studies have not involved programming
activities gpanning multiple phases of the software life~-
cycle and reguiring the natural jintegration of multiple
crogramming tasks. Nor have experimental stugies useg
nontrivial test materials requiring sustained effort lasting

severai. weeks and involving several hunared lines of code,

CHAFTER 111

I11. INYESIIQAIIQN SPECIEILS

This chapter outlines the surroundings in which the
exderiment was conducted, the experimental design that was
emolcyea, the programming methodologies that were compared,
the data collection and reduction that was performed, and

the grogramming aspects that were measured.

-—— - - -

several Circumstances surrounding the experiment
¢oviTitute signifijcantly to the context in which its results
must Le appraised, These include the setting in which thef
exgseriment was conducted, the people who participated as :
sudjectsy, the software development project that s;;ved as
ths experimental task, the computer programming language in
which the software was written, and the computer system and

access mode that were used during development.

The experiment was conducted during the Spring 1976
senester, January through May, within regular academic
courses given by the Department of (omputer Science on the
Colleye Park campus of the university of Maryland. Two
conparable advanced elective courses were utilizegy edach
with the same academic prerecuisites. The experimental task
anl tregstments were built into the course material ana
assijnments, Everyone in the two classes participatea in
the experiment; they cooperated willingly and were aware of
tein; monitored, but had no knowledge of what was being

otserved or whys

The participants were advanced undergraduate and

araduate students in the Department of Computer Science. Cn

tne whole, they were reasonably competent computer

17

s » . . . o "

CRAPTER 111

rrosrammers, all having completed at least four semesters of
programming course work and some having as much &s three
years” professional programming experience in government or
injustry. OGenerally speaking, they were familiar with the
implementation Language and the host computer system, but
inexperienced in team programming and the disciplined

methodologye

The programming appiication was a simple compiler,
involving string processing and translation (via scanning,
narsing, code generation, ana symbol table management) from
an Algol-like language to zero-address code for a
hyoothetical stack machine, The total task was to design,
inolement, test, and debug the complete computer software
system from given specifications. The scope of the project
excluded both extensive erro: handling and user
documentation, The project was of modest but nonnegligible
difficulty, requiring between one and two man~months of
effort. The size of the resulting systems averaged over
130 lines of high-level language source code. All facets
of the project itself were fixed and uniform across all
development “teams,” Given the same specifications,
conputer resource allocation, calengar time allotment, host
machine, implementation language, debug3ing tools, etcCey
each "team”™ worked independently to build its own system,
The celivered systems each ran (is.eey they worked) anu

passec an independent acceptance test.,

The implementation tanguage was the high-tevel,
structured=programming language SIMPL-T {Basili & Turner
?8]., This language was designed and developed at the
University of Maryland where it is taught and used
extensively in regular Department of Computer Science
courses. SIMPL~T contains the following control constructs:

sejuence, ifthen, itthenelse, whiledo, case, exit from loop,

N

CHAFTER 11

and return from routine (but no gotod)e SIMPL=-T allows
essentially three levels of data declaration scope (i.e.,
lccal to an individual routine, global across the several
rostines of an individual module, or entry-global across the
routines of several modules), but routines may not be
nesteue. Adahering to a philosophy of "strong typing,” the
lanjuage supports integer, charactery, and string gata types
and cingle dimension array data structurese. It proviages the
crogrammer with automatic recursion and PL/1-like string~-
orocessing capabilitiess (Acditional details regarding the
S1YMPL-T programming language are intersperses among the

exdlanatory notes in Chapter IV.)

The host ccmputer system was the campus—-wide computing
facility, a Univac 1100 machine with the usual Exec 8
ocperating system. This system supports, in its fashion,
both patch access (via puncth cards) and interactive time=~
sharing* access (via TTY or CRT terminals)., The
participants were well acquainted with the system and
accustomed to either access modee. During the experiment,
the participants were allowed to choose whichever access
mole they preterred and could switch freely between modes.
Alnost everyone consistently preferred the interactive
access mode; only one person-—in the Al group (see below),

by the way=--used the batch access mode extensivelyeo

The major elements >f an experimental design are its
units, treatment factors, treatment factor levelsy observed
variables, local control, and management of extraneous
tactors. (Ct. [Ostle and Mensing 75, chap, 2] for a general
treatment of these elements.)

+« {aliLed "demana" in Univac terminology.

e PO SO

CHAPTER II1

An experimental unit .s that object to which a single
treatment is applied in one replication of the event xnown
as tre "basic experiment.” In this study, the "basic
exoeriment” was the accomplishment of a specific software
development project (see above), anag the experimental unit
was the software development team (i.eey a small group of
pesple working together to cevelop the software). A total
ot 19 replications of this "basic experiment,” each
performed concurrently and independently by a separate

exserimental unit, were involved in this experiment.

dost experiments are concerned with on one or more
indjecendent variables and the behavior of a2 one Or more
deoendent variables as the independent variables are
permitted to vary. These independent variables are known as
exderimental treatment factorse This experiment focused on
the approach used to develop software, as the single
experimental treatment factor.

txperiments usually involve some deliberate variation
in the experimental treatment factor(s). ©Oifferent values
or classifications of the factor(s) are known as the
exoerimental treatment factor tevels. In this experiment,
three levels were selected for the software development
aporoach factor. (Conceived as variations in two human-
factors=-in-programming issues, S$ize of development '"teanm"
and dejree of methodological discipline, the experimental
treatment factor levels are denoted by the following
mnemonics:
Al == individual programmers working alone, following
an ad hoc approach (see below);
AT <= teams of three programmers working together,
following an ad hoc approach (see below); and
07T == teams of three programmers working together,

following a disciplined methodology (see below).

20

—1-—---n-----n--------u----n-..lillilll-l-l‘

CHAPTER 111

buring an experiment, observations of the dependent
variavle(s) are made for each experimental unit. An
exoeriment”s immediate objective is to ascertain the
relationship between the experimental treatment factor
levels and the experimental observed variables, In tnis
exdoeriment, the observecd variables were quantifiable
programming aspects, or metrics (see below), 0of tne scftware
development process or the developed software proguct. A
targe set of such aspects were considered in the studye.
Technically speaking, this amounted to conducting a series
of simultaneous univariate experiments, one for each
cro3ramming aspecty all sharing 3 common experimental design

and altl based on the same empirical data sample.

txperimental local control addresses the configuration
by which (a) experimental units are obtained, (b) units are
placec into groups, and (c) groups are subjected to
different experimental treatments (i.e., specific
conbinations of experimental treatment factor levels).
Ltocal control is employed in the design of an experiment in
order to increase its statistical efficiency or to improve
the sensitivity/power of statistical test procedures.
fxoerimental local control usually incorporates some form of

randomization—-—-a basic principle of experimental design--

since it 1s necessary for the validity of statistical test

orocedures.,

For this experiment, subjects were obtained on the
basis 0of course enrollment: since the experiment was

emoedded within tw0o academic courses, every student enrolled

S ey e I B A e e

in thuse courses automatically participated in the
exderiment, Software development "teams" were formed among
these subjects. In the one course, the students were
allowed to choose between segregating themselves as

injividual programmers or combining with two other

21

CHAPTER 111

classmates as three-person programming teams, In the other
course, the students were assigned (by the researcher) into
three-person teams, The two academic courses themselves
provided the variation in methodological discipline, The
atmnosphere of the first course was conducive to an ad hoc
aparoach to programming, white the disciplined methodology
was stressed in the second courses, In this manner, three
experimental treatments (corresponding to the three
exderimental treatment factor levels Al, AT, and DT) were
created, and three groups of 6y 64y and 7 units

(respectively) were exposed to them,

There are usually several extraneous factors, other
than the ones identified as experimental treatment factors,
that could influence the behavior being observed in an
experiment, Many experiments (includings this one) follow a
reductionist paradigm, which seeks to control for all
variaples except a select few, SO that the effect of the
independent variables uoon'the dependent variables can be
isolated and measured. In this experiment, a variety of
programming factors which do affect software development
were given conscious consideration as extraneous variables:

- programming application and/or project

- project specifications

- implementation language

- calendar schedule

~ availaole computer resources

- available automated tools :
wherever possible, these variables were held constant by
exdlicitly treating all experimental units in the same

mannere.

unfortunately, the ideal reductionist paradigm can only
be approximated, because of factors which are suspected of

stronyg influence on the behavior of interest, but which

CHAPTER 111

cannct ve explicitly controlled within the experimental
desiyn, In this experiment, there were two such factors:
the personal ability/experience of the participants and the
amd>unt of actual time/effort they (as students with other
classes and responsibilities) chose to devote to the
projects HoOwever, information from 3 pretest questionnaire
was useyg to balance the oerscnal ability/experience of the
participants in the Jdisciplined teams (only), by first
cartitioning :he group DT students into three equal-sized
catej;uries (h gn, mediumy low) Dasea on their grades in
orevious computer courses and their extracurricular
prograomming experience, and then randomly selecting one

stuoent from each category to form each team.

fFor tne statistical mocel employed to analyze this
exseriment, it Wwas necessary to assume homogeneity among the
sarticipants with respect to personal factors such as
acility anc/or experience, motivation, time and/or effort
devoted to the project, etces As a reasonable measure of
indjividual programmer skill Llevels under the circumstances
of this study, the participants” grades from a particulariy
pertinent prerequisite course provioced & post-experimental
contirmation of at Least one facet of this assumec
honoceneity: the distripution of these grades among the
three experimental groups would have gisplayed the same
degree of homogeneity as was actually observed in over 9 out
of 17 purely random assignments of the participants to the
Groucs. 1f anything, in the researcher”s opinion, the
participants in group Al seemed to have a slight edge over
those in groups AT and 0T with respect to native programming
adilityy while grougs Al and AT seemed slijghtly favored over
eroup CT with respect to formal training in the apolication

23

CHAPTER 111

Pragremming “Yethodolggies

~

The disciplined methodology imposed on teams in group
5T consisted of an integrated set of state-of-the-art
techniques, including too-down design, process design
tanguage (PDL), functional expansion, design and code
reading, walk-throughs, and chief programmer team
orjanization. These techniques and organizations were
taught as an integral part of the course that the subjects
were taking, using [Linger, ™ills % Witt 791, [(Rasili &
Taker 75], and [Brooks 75] as textbookSe Since the Subjects
were novices in the methodology, they executed it to varying
Jejrees of thoroughness and were not always as successful as
seasoned users of the methodology would be.

The disciplinea methodology prescribed the use of a PDL
tor expressing the design ot the problem solutions The
design was elaborated in a top-down manner, each level
reoresenting a solution to the problem at a particular level
ot abstraction and specifying the functions to be expanced
at the next level. The PDL consisted of a fixed set of
structured control and data structures, plus an open-enced
desicner-defined set of operators and operands corresponding
to the level of the solution and the particular application.
tesign and code reading involved the critical review of each
team member”s PDL or coce by at least one other member of
the teames walk=-throughs representea a more formalizeo
presentation of an individual®s work to the other members of
the team in which the POL or code was explained step oy
step. Under the chiet programmer team organization, the
chief programmer defined the top-level solution to the
proolem in POL, designed and implemented key portions of
code himself, ahd assigned subtasks to the other two team
menpers. Each of these nrogrammers, in turn, code-read for

the chief grogrammer, designeg or coded their assignea

e

CHAPTER I11

sudgcieces, ana performed Librarian activities (i.e.,
entering or revising code stored on=-line, making test runs,

etCe)o

Two variants of chief programmer team organization,
denoted CP and M, were employed. In both cases, one member
ot the team (the chiet programmer or the manager) was
responsible for designiny and refining the top~ievel
solution to the proolem in PDL, identifying system
conponents to be implemented, and defining their interfaces,
"ne twO other team members (the programmers) were each
responsible for designing or coding varipus system
conponents, as assigned by the chief programmer or managers.
In the CP case, the chief programmer maximized his coaing
duties by implementing the key code himself, and the
orogrammers performed Lidbrarian activities (i.e., entering
or revising code staored on-Lline, making test runs, etce.).
In the M case, the managyer minimized his coding duties by
acting as Llibrarian and yielding greater responsibility for
imolementation to the programmers. Although there were
(suprosedly) four CP teams and three % teams in group DT,
this cistinction between the (P and M variants of chief
ars>grammer team orjanization is not utilized in the present
study, since it is believed that the impact of their common
features transcends any impact due to their differences.
“oreover, in actual practice, it was observed that the (P
ani ¥ variants are only identifiable extrema along a
continuum and that the group DT teams all gravitated toward

a romfortable compromise in this respecte.

tach individual or team in groups Al or AT was allowed
to develop the software entirely in a manner of his or their
own chaosing, which is herein referred to as an ad hoc
apo>roach. No methogology was taught in the course these

sudjects were taking. Informal observation by the

CHAPTER 111

researcher confirmed that approaches used by the individuals
and ad hoc teams were indeeu lacking in discipline anc gig
not utilize the key elements of the disciglined methouology
(eeyey an individual working alone cannot practice cogse
reading,y, and it was evident that the ad hoc teams did not
emsloy a PDL or a formal top-down design).

Datag Collegtjon angd Reductign

Due to the partially exploratory nature of the
exseriment in terms of differences to be discovered in the
project and process, as nuch information was collecteo as
could be JdJone in an efficient and unootrusive manner, A
variety of information sources was used. Individual
guestionnaires revealed the personal background and
programming experience of each participant. Private team
interviews and in-class team reports provided information
rejarding individual performance on the project. ™"Run Llogs"
and computer account billing reports gave a record of the
comnputer activity during the projecte. Special module
conpilation and program execution processors (invoked on-
line via very slight changes to the regular command
tanguane) created an historical data bank of source‘code and

test cata accumulated throughout the project development.

The data bank provided the principal source of
information analyzea in the current investigation and other
information sources have been utilized only in an auxiliary
manner (if at all). Thus, data collection for the
exoeriments themselves was automated on-line, with
essentially no interference to the programmer”s normal
cattern of actions during computer (terminal) sessions. The
fiaal products were isolated from the data bank and measured
tor various syntactic and organizational aspects of the

tinishea product source code. Effort and cost data were

CHAPTER 111

also extracted from the data banks The inputs to the
analysis, in the form of scores for the various programming
asoectsy reflect the quantitatively measured character of
the prouuct ancd tnhe process. Much of the data reduction was
done automatically within a specially instrumented compilere.
Sone was done manually (e.ge.y examining characteristics
across modules). Due to the underlying collection ang
reduction mechanism, which was uniformally applied to all
exoerimental units, the data used in the analysis has the
characteristics of objectivity, uniformity, and
quantitativeness and is measured on an interval scale of
measurement [Stevens &4¢1]. The raw scores for the measured

programming aspects are summarized in Apppendix 1.

Pragramming Aspegts and letrjcs

The dependent variadles studieos in this experiment are
callead programming aspects. They represent specific
isotlatable and observable features of programming phenomena.
Furthermore, they are measured in an objective and
automatable manner (i.e., they could be extracted or
conputeg directly on-Line from information readily
ootainable from operating systems and compilers). For each
programming aspect there exists an associated metric, a
specitic algorithm which ultimately defines that aspect and

by which it is measurede.

The programming aspects may be categorized as either
process= or product-related, on the basis of what they
measure. Process aspects represent characteristics ot the
development process, in particulary, the cost and required
effort as retlected in the number of computer job steps (or
runs) and the amount of textual revision of source coue
durin; development. Product aspects represent

cnaracteristics of the final product that was developed, in

.7 bl e A sk« e e

CHAPTER 111

particular, the syntactic content and organization of the
synpolic source codee. Examples of product aspects are
nunper of lines, frequency of particular statement types,

average size of data variables” scope, etc.

The programming aspects may also be categorized as
either rudimentary or elaborative, on the basis of their
conceptual nature, The rudimentary aspects are conceptually
Guite simple, reflecting ordinary surface features of the
crocess or product. for example, the numbers of data
variaples and routines in a program are rudimentary aspects;
they pertain to the sheer size of the software ana are
sonewhat uninteresting in themselves. The elaborative
asoects are conceptually more suptle, reflecting deeper
characteristics of the process or product. For example, the
nunper of times pairs of routines communicate via data
variables (see the data bindings metric below) is an
elaporative aspect; it pertains to the software”s modularity

and is dintuitively appealinge.

Finallyy, the prograwnming aspects may be categorized as
either confirmatory or exploratory, on the basis of the
motivation for their inclusion in the study. The
tonfirmatory aspects had peen consciously planned in advance
nt collecting and extracting the data, because intuition
sujdested that they would serve well as gquantitative
injicators ot important Jualitative characteristics of
sofware development phenomena. It was predicted a priori
that these confirmatory aspects would verify the study“’s
basic oremises regardinyg the programming environments being
investigated in the experiment. The exploratory aspects
were considered mainly because they could be collectea and
extracted cheaply (even as a natural by-product sometimes)
alony with the confirmatory aspects. There was little

serious expectation that these exploratory aspects would be

lllFl!lI.llllIllllIlllllIlll-lllllIlll!!ll!I'llI-lE'l-l-l'--"“ﬂ"'"""'f

CHAPTER IIl '

useful indicators of differences among the groups,; but they
were included in the study with the intent of observing as
many aspects as possible on the off chance of discovering
any unexgected tendency or differences Thus, this study
conbines elements of both confirmatory and exploratory aata
analysis within one common experimental setting (Tukey 691,
The confirmatory programming aspects are identified in the
accompanying tables by being flagged with asterisks; the

exoloratory programming aspects are unflagged.

it should oe noted that a large percentage of the
nproduct aspects fall into the rudimentary-exoloratory
catesorye On the whole, these product aspects represent a
fairly extensive taxonomy of the surface features of
software. The idea that important software qgualities (eeges
“complexity”) could be measured by counting su